org.apache.spark.mllib.clustering

MCL

object MCL extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MCL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  18. def toString(): String

    Definition Classes
    AnyRef → Any
  19. def train[VD](graph: Graph[VD, Double], expansionRate: Int = 2, inflationRate: Double = 2.0, convergenceRate: Double = 0.01, epsilon: Double = 0.01, maxIterations: Int = 10, selfLoopWeight: Double = 1, graphOrientationStrategy: String = "undirected"): MCLModel

    Train an MCL model using the given set of parameters.

    Train an MCL model using the given set of parameters.

    graph

    training points stored as BlockMatrix

    expansionRate

    expansion rate of adjacency matrix at each iteration

    inflationRate

    inflation rate of adjacency matrix at each iteration

    epsilon

    minimum percentage of a weight edge to be significant

    maxIterations

    maximal number of iterations for a non convergent algorithm

    selfLoopWeight

    a coefficient between 0 and 1 to influence clustering granularity and objective

    graphOrientationStrategy

    chose a graph strategy completion depending on its nature. 3 choices: undirected, directed, birected.

    returns

    an MCL object

  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped